Consensus Among Computer Networks

Darren Tapp (ASU)

Darren Tapp

Arizona State University

November 18, 2020

Consensus November 18, 2020 1/26

Consensus

Academic organization:
Byzantine Fault Tolerance
Nakamoto Consensus

Dash Consensus

Darren Tapp (ASU) Consensus November 18, 2020 2 /26

BFT: Several peer reviewed articles, e.g.
“Practical Byzantine Fault Tolerance”

Nakamoto Consensus: “Bitcoin: A Peer-to-Peer Electronic Cash
System”

Dash Consensus: Dash Improvement Proposals 2,3,6-8

Darren Tapp (ASU) Consensus November 18, 2020 3 /26

https://blog.tappmath.com/files/Practical_Byzantine_Fault_Tolerance.pdf
https://blog.tappmath.com/files/bitcoin.pdf
https://blog.tappmath.com/files/bitcoin.pdf
https://github.com/dashpay/dips

Byzantine Fault Tolerance

For an open network

Byzantine Fault Tolerance

Is vulnerable to Sybil attacks
Fails (generally) if over one third of nodes are malicious

Requires multiple communication rounds

Darren Tapp (ASU) Consensus November 18, 2020 4/26

Nakamoto Consensus

For an open network

Nakamoto Consensus

Mitigates Sybil attacks with proof of work
Can be verified by a passive node

Generally runs at a stable Nash equilibrium

Darren Tapp (ASU) Consensus November 18, 2020 5/ 26

Nakamoto Consensus

-+ —>{Block 5—{Block 6 [—---

The consensus is about a global state (UTXO) and the blocks are
instructions for changing the global state (transactions.)

Darren Tapp (ASU) Consensus November 18, 2020 6 /26

Nakamoto Consensus

A Nakamoto network could be out of consensus

This diagram shows a blockchain where the most recent changes could be
in dispute.
Consensus is still maintained over old changes.

Darren Tapp (ASU) Consensus November 18, 2020 7 /26

Nakamoto Consensus

However, the network will collapse into a consensus by following
the longest chain

|Block 7’ |—{Block 8

Darren Tapp (ASU) Consensus November 18, 2020 8 /26

Dash Consensus

Outline:

The remaining portion of this seminar will be for

explaining existing Dash consensus implementations
Quick overview of what a Dash consensus is
Choice of threshold signature scheme
Byzantine Resistance; “Quorum Math"
Applications of ChainLocks and InstantSend

Darren Tapp (ASU) Consensus November 18, 2020 9 /26

What is Dash Consensus?

A Dash consensus requires a blockchain to provide Nakamoto consensus.

Q Register actors on chain with public key
Q Select subset, called a quorum, of registered actors

@ Produce threshold signature of statement/datum that is in consensus

Darren Tapp (ASU) Consensus November 18, 2020 10 / 26

Nomenclature

If M actors are registered and a subset on n actors is selected and a
threshold of t out of the n actors is required for signature.

We call this a:

Dash(M, n, t) Consensus

for security reasons we assume t > g

We also assume that the quorum of n nodes is a simple random sample of
the M registered.

In practice, a simple random selection is simulated using hash functions.

Darren Tapp (ASU) Consensus November 18, 2020 11 /26

Register on Chain

Details for Transaction

Hash 0038669173307 4cee32e 1497 56cebb91 r20e0 T FE10ee2411c69c68196 edd
Block Height 917 :52 (194686 confirmations)

Block Date/Time 2019-112512:07:26

Total Output 0 DASH

Fees 47985 DASH

nputs / Outputs | Raw Trar

Inputs

Index Previous output Address Amount

0 7931beBacdded98d...0 in 1176917 XqfLWBNndcFnBtJbhxF6bgkKMsdIKqtdYF 0 DASH
Outputs

Index Redeemed in Address Amount

0 in 1176982 XqfLWBNn4cFnBtJbhxF6bgkKMsdJKqtdYf 0. DASH

Darren Tapp (ASU Consensus November 18, 2020 12 /26

Register on Chain

"extraPayload”: "010000000006D316h1e28c9580162fO8ELTS
"proRegTx": {
"version": 1,
“collateralHash”: "8b06ec@388dcT420er55ad8787032490267e2937 b1 80821 1e8b058C2b116D3",
"collateralIndex": 1,
"service": "139
"ownerAddress'
"votingAddress'
"payoutAddress”
"pubKeyOperator"
"operatorReward"
"inputsHash": "a@0p9780d03a2b6dcT6d7822a1a9760513305efdegcarTa455c110eTh72raa6a

269024938 87ad55e 297 803ec968b01 F78b

collateralHash and collaterallndex point out 1000 dash on chain.

This 1000 dash requirement mitigates a Sybil attack.

ownerAddress, voterAddress, and payoutAddress are base 58 encoding of
ECDSA keys.

pubKeyOperator is a hexadecimal encoding of a BLS public key.

This key is what's used for Dash consensus.

Darren Tapp (ASU) Consensus November 18, 2020 13 /26

Choice of Threshold Signature

We'll compare two threshold signature schemes:

Schnorr signatures

BLS signatures

Darren Tapp (ASU) Consensus November 18, 2020 14 / 26

Naive Multisignature

For Schnorr and BLS signature schemes,
public keys are points on elliptic curves.

If three actors publish their public keys P,Q and R
a multisignature is a valid signature for P+ Q@ + R.

Darren Tapp (ASU) Consensus November 18, 2020 15 / 26

Related-key Attack

Alice Bob and Malory want to construct an multisignature.

Alice obtains private key a with public key A and publishes A
Bob obtains private key b with public key B and publishes B

Malory obtains private key ¢ with public key C
but publishes C — A— B

Then an aggregate signature will be for the key
A+B+C-A-B=C.

Since Malory knows the corresponding private key of C
he can construct an aggregate signature without Alice or Bob.

Darren Tapp (ASU) Consensus November 18, 2020 16 / 26

Schnorr signatures can work with ECDSA keys that are
currently used for Dash payments.

BLS signatures are easier to construct on the fly and
they have a smaller attack surface.

Darren Tapp (ASU) Consensus November 18, 2020 17 / 26

Long Story Short

Schnorr signatures require each party to provide entropy.
This entropy is combined before a signature can be constructed.
If something goes wrong in the entropy stage
then the process must start over.

Reusing entropy could allow private keys to be solved for.

BLS signatures do not require entropy.

Darren Tapp (ASU) Consensus November 18, 2020 18 / 26

Citation

Signing. Let X; and z; be the public and private key of a specific signer, let m
be the message to sign, let X, ..., X, be the public keys of other cosigners,
and let L = {X1,...,X,,} be the multiset of all public keys involved in the
signing process.” For i € {1,...,n}, the signer computes

a5 = Hogg(L, X;) 1)

and then the “aggregated” public key X = [T, X{. Then, the signer
generates a random ry <g Z,, computes Ry = ¢g", t; = Heom(Ry1), and

sends t; to all other cosigners. Upon reception of commitments to, ..., t,
from other cosigners, it sends Ry. Upon reception of Ra,..., R, from other
cosigners, it checks that t; = Heom(R;) for all i € {2,...,n} and

; otherwise, it computes

R= ﬁRi,

i=1
c= Hsig()w(. R,m),

$1 =11 + cayry mod p,

Cite page 11 of:
“Simple Schnorr Multi-Signatures with Applications to Bitcoin”

Darren Tapp (ASU) Consensus November 18, 2020 19 / 26

https://eprint.iacr.org/2018/068.pdf
https://eprint.iacr.org/2018/068.pdf

Citation

Threshold Signatures, Multisignatures and Blind Signatures 35

it does not have the restriction that the subset of signers should be known in
advance. We then propose the new GDH multisignature scheme MGS. It wor]w
in any GDH group. Our MG S scheme solves the open problem stated in [

it does not require a priori knowledge of a subgroup of signers and is provably
secure. We state the security result and provide a proof in [3] . Moreover, MGS
is more efficient than the one of [33] which requires three rounds of communica-
tion for the multisignature generation protocol, where MGS requires only one,

it is basically non-interactive. Similarly to their scheme, the signature length
and verification time for MGS is independent of the size of the subgroup and is
almost the same as for the base signature scheme. In fact each signature share of

our multisignature scheme is the standard GDH signature. In the scheme of []

a signer is not allowed to begin a new signing protocol until the previous one
has completed. This is because their proof of security uses rewinding which is
incompatible with concurrency. Our scheme does not have such restriction not
only because our proof does not use rewinding but mostly because the signing
protocol is non-interactive.

We note that the approach underlying the construction of the multisigna-

trimm mohamn MOQ ann ha voad £a anhinem aBninet hotoh coeifiankine of O

Cite page 35 of:
“Threshold Signatures, Multisignatures and Blind Signatures Based on the
Gap-Diffie-Hellman-Group Signature Scheme”

Darren Tapp (ASU Consensus November 18, 2020 20 / 26

https://blog.tappmath.com/files/Boldyreva2002.pdf
https://blog.tappmath.com/files/Boldyreva2002.pdf
https://blog.tappmath.com/files/Boldyreva2002.pdf

Clarification

A BLS threshold signature, has an interactive
Distributed Key Generation phase.

After that, all threshold signatures are non-interactive.
For a t out of n threshold signature. Any party with > t signature shares
can create a valid threshold signature.

Darren Tapp (ASU) Consensus November 18, 2020 21 /26

Byzantine Resistance

A Byzantine actor attempts to disrupt or alter DASH(M, n, t) consensus
by registering or controlling nodes.

There are two types of attacks that a Byzantine actor can employ.

Byzantine DOS

The actor has control of and/or has disabled > n — t nodes to prevent a
signature from being formed

Byzantine Hijack

The actor controls > t nodes and can produce any signature.

Darren Tapp (ASU) Consensus November 18, 2020 22 /26

Byzantine Resistance

When considering a DASH(M, n, t) consensus. There are M choose n
possible quorums that can be selected. Recall that M choose n is a
binomial coefficient and written

M

n

If b out of the M nodes are Byzantine, and b > t then there are

M —b\ (b

n—t t
quorums that contain exactly t Byzantine nodes. So the probability that a
quorum has more than t Byzantine nodes is

Sope(nb) (Mb) (b
(")

Darren Tapp (ASU) Consensus November 18, 2020 23 /26

Byzantine Resistance

For a DASH(5000, 400, 240) consensus.

Byzantine | Byzantine DOS Hijack

Proportion Nodes probability | probability
0.05 250 4.19e-125 | 1.27e-284
0.10 500 3.3le-65 | 7.11e-157
0.20 1000 1.68e-22 2.89e-76
0.30 1500 3.37e-06 1.29e-38
0.34 1700 3.81e-3 1.23e-28
0.40 2000 0.478 3.21e-17
0.50 2500 0.99999 1.82e-05

Source: Python2 Calculation

Darren Tapp (ASU) Consensus November 18, 2020 24 / 26

https://blog.tappmath.com/pages/script-for-calculating-byzantine-resistance/

Byzantine Resistance

For a DASH(5000, 50, 30) consensus.

Byzantine | Byzantine DOS Hijack

Proportion Nodes probability | probability
0.05 250 3.83e-15 3.25e-27
0.10 500 2.81e-09 3.10e-18
0.20 1000 2.98e-4 5.42e-10
0.30 1500 4.69e-2 9.53e-06
0.34 1700 0.147 1.39e-4
0.40 2000 0.439 3.22¢-3
0.50 2500 .900 0.10

Source: Python2 Calculation

Darren Tapp (ASU) Consensus November 18, 2020 25/ 26

https://blog.tappmath.com/pages/script-for-calculating-byzantine-resistance/

Applications

With M active masternodes on the Dash network

InstantSend

A DASH(M, 50, 30) consensus is used to identify first seen transactions.
Once a transaction has a InstantSend lock network (Nakamoto) consensus
rules will not accept a conflicting transaction.

ChainLocks

A DASH(M, 400, 240) consensus is used to identify a first seen block.
Once a mined block is signed then the network will not reorganize before
the signed block.

Darren Tapp (ASU) Consensus November 18, 2020 26 / 26

